

CONTENTS AND AIMS

- Main components of beer
 - Water!
- What's in your water?
- Water treatment review
- Membrane Capacitive Deionisation
- Case study
 - Wellington Brewery

MAIN COMPONENTS OF BEER

- Grain
 - Source of sugar
- Hops
 - Flavour and preservative
- Yeast
 - Conversion of sugars to alcohol
- Water
 - Makes up >90 % of beer!
- Brewer!

WATER!

- 71 % of Earth's surface is covered with water!
 - 4 % fresh water
 - 0.3 % accessible fresh water
- 60 % of the human body is made up of water
- Made up of hydrogen and oxygen H₂O
- Defies the rules
- Universal solvent
- You can use it to make BEER!

WHAT IN YOUR WATER?

- Total Suspended Solids (TSS)
 - Particulate
 - Organic matter
- Disinfectants
 - Chlorine/chloramine
- Total Dissolved Solids
 - Mineral content

WELLINGTON BREWERY – WATER ANALYSIS

Analysis	T.				r
		Analysis			Lab
	Accredited	Ву	Date Extracted	Date Analyzed	261-18
Date Sampled				ji.	15-Mar-18
Time Sampled					13:30
Sample Matrix				52	PW

Calculated Parameters

Ion Balance (%)	Yes	Р	23-Mar-18	23-Mar-18	0.7

General Inorganics

Total Alkalinity (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	279
Hardness (as CaCO3 mg/L)	Yes	Р	21-Mar-18	21-Mar-18	462
Specific Conductivity (µs/cm)	Yes	Р	20-Mar-18	20-Mar-18	897
pH (pH Units)	Yes	Р	20-Mar-18	20-Mar-18	7.6
Total Disolved Solids (mg/L)	Yes	Р	26-Mar-18	27-Mar-18	588

Anions

Bromide (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.1
Chloride (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	71
Fluoride (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	0.3
Nitrate (as N mg/L)	Yes	Р	20-Mar-18	20-Mar-18	0.6
Nitrite (as N mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.05
Phosphate (as P mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.2
Sulphate (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	142

IONIC/MINERAL CONTENT

- Hardness (Ca²⁺, Mg²⁺)
 - Clarity, flavor, stability
- Sodium (Na⁺)
 - Benign in low levels, can taste minerally or metallic
- Trace minerals: iron, zinc, copper
 - Support yeast health
 - Subtly affects flavor
 - Gives your beer its own uniqueness!

PERIODIC TABLE

IONIC/MINERAL CONTENT

- Alkalinity (HCO₃⁻, CO₃²⁻)
 - pH and the buffer capacity of the water
- Chloride (Cl⁻)
 - Flavour fullness and sweetness
- Sulfate (SO₄²⁻)
 - Flavour hop bitterness; dryness and crispness

CONTROL YOUR WATER - THEORY

- Physically
 - Barrier
- Chemically
 - Liquid chemistry, gas
- Electrically

Do nothing!

CONTROL YOUR WATER - METHODS

- Total Suspended Solids (TSS)
 - Particulate filtration
- Disinfectants
 - Activated/catalytic carbon
- Total Dissolved Solids (TDS)
 - Ion Exchange Softener (IX)
 - Reverse Osmosis (RO)
 - Membrane Capacitive Deionisation (CapDi)

UNITED WE BREW

ION EXCHANGE SOFTENER

Exchanges hardness (Ca²⁺ and Mg²⁺) with soft salts (Na⁺, K⁺)

ION EXCHANGE SOFTENER

 Exchanges hardness (Ca²⁺ and Mg²⁺) with soft salts (Na⁺, K⁺)

- Advantages
 - Cheap
 - Robust
 - Conventional

ION EXCHANGE SOFTENER

 Exchanges hardness (Ca²⁺ and Mg²⁺) with soft salts (Na⁺, K⁺)

Disadvantages

- Creates poor brewing water
 - No calcium/magnesium
 - High sodium/potassium
- Brine discharge

REVERSE OSMOSIS (RO)

Uses high pressure and membranes to remove
 >99 % dissolved content from water

REVERSE OSMOSIS (RO)

Advantages

- Provides known 'zero' base from which to build a known water quality with salt addition/blending
- Will remove solids, organics, viruses and bacteria
- Competitive capital cost
- Conventional

REVERSE OSMOSIS (RO)

- Disadvantages
 - Creates a generic water
 - Blending/salt addition adds additional work
 - High operational and maintenance cost
 - High water wastage (typically 40-70 % reject)
 - High pretreatment requirements

MEMBRANE CAPACITIVE DEIONISATION (CAPDI)

Uses electricity to tunably reduce the mineral content from water

MEMBRANE CAPACITIVE DEIONISATION (CAPDI)

Advantages

- Ability to target require TDS level
- Consistent, constant water quality
- Low operational and maintenance requirements
- High water recovery
- Simplified pretreatment
- High degree of automation, feedback and monitoring

MEMBRANE CAPACITIVE DEIONISATION (CAPDI)

- Disadvantages
 - Potentially higher capital cost
 - New technology, sole source
 - Does not remove solids, organics, viruses and bacteria

WHAT IS CAPDI?

HOW DOES IT WORK?

Purification

 Feed water passes between oppositely charged electrodes which remove and store dissolved ions, leaving low TDS water

HOW DOES IT WORK?

- Regeneration
 - Reversal of electrode polarity rejects stored ions regenerating the system
 - Ions are flushed from the system with a low flow

FROM CELLS TO SYSTEMS

 Systems are composed of modules, which are built from stacks comprising of membrane and

electrode cells

INDUSTRIAL SERIES SYSTEM (IS12)

UNITED WE BREW

CAPDI SYSTEMS

 Flow rate, feed TDS and targeted purified water quality determine the system and number of modules required

CURRENT CUSTOMERS

DURATION

WEST ACRE **BREWING** NORFOLK

UNITED WE BREW

CASE STUDY: WELLINGTON BREWERY

CASE STUDY: WELLINGTON BREWERY

Installed: Apr-19

• System: IS-24

WELLINGTON BREWERY – WATER ANALYSIS

Analysis	T.				r
		Analysis			Lab
	Accredited	Ву	Date Extracted	Date Analyzed	261-18
Date Sampled				ji.	15-Mar-18
Time Sampled					13:30
Sample Matrix				52	PW

Calculated Parameters

Ion Balance (%)	Yes	Р	23-Mar-18	23-Mar-18	0.7

General Inorganics

Total Alkalinity (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	279
Hardness (as CaCO3 mg/L)	Yes	Р	21-Mar-18	21-Mar-18	462
Specific Conductivity (µs/cm)	Yes	Р	20-Mar-18	20-Mar-18	897
pH (pH Units)	Yes	Р	20-Mar-18	20-Mar-18	7.6
Total Disolved Solids (mg/L)	Yes	Р	26-Mar-18	27-Mar-18	588

Anions

Bromide (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.1
Chloride (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	71
Fluoride (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	0.3
Nitrate (as N mg/L)	Yes	Р	20-Mar-18	20-Mar-18	0.6
Nitrite (as N mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.05
Phosphate (as P mg/L)	Yes	Р	20-Mar-18	20-Mar-18	<0.2
Sulphate (mg/L)	Yes	Р	20-Mar-18	20-Mar-18	142

WELLINGTON BREWERY – WATER ANALYSIS

Parameter	Unit	Feed Water	Treated
TDS	mg/L	588	128
Conductivity	uS/cm	897	286
рН		7.6	7.2
Hardness	mg/L as CaCO ₃	462	108
Calcium	mg/L	118	28
Magnesium	mg/L	41	9
Sodium	mg/L	34	32
Alkalinity	mg/L	279	103
Chloride	mg/L	71	16
Sulfate	mg/L	142	26

WELLINGTON - BENEFITS

- Improved beer quality and consistency
- Ability to tailor water
- Local connection and water source
- Significant reduction in maintenance costs
 - Cleaning chemicals and labour
- Reduction in costs from water modification
 - Salts, lactic acid, labour
- High water recovery, low maintenance system

CAPDI - BENEFITS

- Dynamic feedback to maintain water quality
- Automated cleanings
- Remote monitoring and support
- Data collection and reporting
- Simple controls and alarms
- Low environmental impact
 - High water recovery, minimal chemicals, no salt

ANY QUESTIONS

???

THANKS!

Joshua Summers
Sales Manager
+1 404 414 4291
joshua.summers@voltea.com

www.voltea.com info@voltea.com

